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Abstract

In this paper we discus GPU implementation of open-sourced gradient boosting library
CatBoost. This implementations shows the state-of-the-art performance among openly-
available libraries and we want to share design insights and used algorithms.
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1. INTRODUCTION

Gradient boosting is a powerful machine-learning technique that achieves state-of-the-art re-
sults in a variety of practical tasks. For a number of years, it has remained the primary method
for learning problems with heterogeneous features, noisy data, and complex dependencies: web
search, recommendation systems, weather forecasting, and many others [2, 10–12]. It is backed
by strong theoretical results that explain how strong predictors can be built by iterative combin-
ingweakermodels (base predictors) via a greedy procedure that corresponds to gradient descent
in a function space.Most popular implementations of gradient boosting use decision trees as base
predictors (gradient boosted decision trees, GBDT).

There exist several gradient boosted decision tree libraries: XGBoost [4], LightGBM [7], H20,
CatBoost [9]. CatBoost (for “categorical boosting”)—high-quality open-source1 gradient boosting
decision trees library that successfully handles both numerical and categorical features.

CatBoost has several advantages compared to other gradient boosting libraries. First of all,
it could efficiently handle categorical features (those ones having a discrete set of values that
are not necessary comparable with each other, e.g. user ID or name of a city). In practice, many
datasets include such feature, but there was a bad support for such type of predictors in open-
source libraries and CatBoost fills the gap: CatBoost was comparedwith with XGBoost, LightGBM
and H2O and outperforms competitors on several publicly available dataset. The results of this
comparison are shown in table 1, andmore information and detailed experiment setup could be
found in [9].

CatBoost is one of the most popular gradient boosted decision trees framework today. This
library is used to train model on a really big datasets. To scale this library on real-world data,
one usually use GPU version of this library. This implementation is highly efficient and could

1 https://github.com/catboost/catboost

SOFTWARE ENGINEERING 59

http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2022-2-59-73
mailto:noxoomo@yandex-team.ru
https://github.com/catboost/catboost


Ershov V. A.

utilize multiple GPU on one or several hosts. Despite having been already released, we realized
that CatBoost GPU implementation was not adequately described and are therefore looking to
correct this oversight in this article.

Table 1. Comparison with baselines. Tuned algorithms. Logloss
CatBoost LightGBM XGBoost H2O

Adult 0.269741 0.276018 (+2.33%) 0.275423 (+2.11%) 0.275104 (+1.99%)
Amazon 0.137720 0.163600 (+18.79%) 0.163271 (+18.55%) 0.162641 (+18.09%)
Appet 0.071511 0.071795 (+0.40%) 0.071760 (+0.35%) 0.072457 (+1.32%)
Click 0.390902 0.396328 (+1.39%) 0.396242 (+1.37%) 0.397595 (+1.71%)
Internet 0.208748 0.223154 (+6.90%) 0.225323 (+7.94%) 0.222091 (+6.39%)
Kdd98 0.194668 0.195759 (+0.56%) 0.195677 (+0.52%) 0.195395 (+0.37%)
Kddchurn 0.231289 0.232049 (+0.33%) 0.233123 (+0.79%) 0.232752 (+0.63%)
Kick 0.284793 0.295660 (+3.82%) 0.294647 (+3.46%) 0.294814 (+3.52%)

The rest of the article is structured as follows:
1. We will briefly discus decision tree learning on numerical dataset in the section 2.
2. The section 3 gives insight about how we should build decision trees on GPU.
3. In the section 4 we will discus novel way of dealing with categorical features, introduced

in CatBoost, and how we implemented it in on GPU
4. In the section 5 we will talk about decision tree learning in distributed setting.
5. Finally, in the section 6wewill provide somebenchmarks of CatBoost GPU implementation

2. DECISION TREE LEARNING IN GRADIENT BOOSTING

For the rest of article we will used the following notation: we have set of n learning samples
D = {(di , yi )}n

i=1, where di ∈Rm is a sample features vector and yi is associated label. By y wewill
denote labels vector: y = (y1, . . . , yn). We have set of all decision trees F — functions from Rm

to R. We will use capital letter Fk (or F , if ensemble length is not specified) to denote ensemble
of k decision trees and non capital letter fi (or f) to denote single decision tree. One defines
loss function L(u, v) and we need to find ensemble F such empirical loss function is as small as
possible:

F = argmin 1

n

n∑
i=1

L(F (di ), yi ). (1)
On the figure 1 visualized the basic idea of gradient boosting: one fits a simple decision tree

to the data. This tree is usually not too deep, and, as a result, has a big error. To improve model
quality the onemore tree is trained, in a suchway that new treewill correct errors of the first one.
Two trees will decrease error, but they are still pretty bad. This procedure is iteratively repeated
until a strong tree ensemble is built.

This idea is formalized in the following way. Boosting algorithms solves the problem in a
greedy manner: we have ensemble FN of N decision trees, we need to build ensemble of size
N +1, then:

FN+1 = FN +argmin f ∈F

1

n

n∑
i=1

L
(
FN (di )+ f (di ), yi

) (2)
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Figure 1. Gradient Boosting

There exist several techniques how to approximately solve equation 2. This techniques are
based on similar ideas of approximation of L via first and / or second order derivatives. For our
purposewe just need to know, that this problemeventually reduces to the next one:wehave label
vectors t = (t1, . . . , tn), weights vector w = (w1, . . . , wn) and some similarity measure S(u, v, w)
defined on u, v, w ∈Rn . Decision tree is searched by solving next optimization problem:

f (d) = argmin f S(t , f (d), w), (3)
where f (d) = ( f (d1), . . . , f (dn)) is vector of predictions for fitted decision tree. We refer reader
to the literature for more details [6].

Classical CART algorithm uses as a similarity measure l2-distance:
S(u, v) =

n∑
i=1

wi ( f (di )− ti )2, (4)
while CatBoost similarity measure is based on vector correlation:

S(u, v) = 1.0−

n∑
i=1

wi f (di )ti√
n∑

i=1
wi t 2

i

√
n∑

i=1
wi f (di )2

(5)

Optimization of equation 3 is usually done by greedy algorithm (see CART [1] for more de-
tails): decision tree is build iteratively on each iterations by splitting leaf (or leaves) in a way that
gives the best similarity measure improvement.

Assume, for example, we need to build a decision tree of depth 1 (decision stump). Assume,
for simplicity, that we have just one feature x = (x1, . . . , xn) (it could be, for example, height) and
that all values of x are unique. Then to build decision tree we need to evaluate each possible
split conditions c and chose one that after splitting points with it into two sets {i : xi ≤ c} and
{i : xi > c} we will obtain the best score.

For decision trees with common similarity functions (like l2-distance or correlation) to eval-
uate best splits we need to compute just two statistics2:

n∑
i=1

ti [xi > c],

n∑
i=1

wi [xi > c],

(6)

where [·] denotes Iverson brackets, i.e., [x j > c] equals 1 if x j > x and 0 otherwise.
2 Or, sometimes, three: one count of samples in each leaf — ∑

[xi > c].
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This two statistics, known for each split candidate, allows us to compute similarity measures
S for each split and choose the best one.

For solving real-world problems evaluation of all possible splits is not necessary: usually
we could consider restricted set of splits selected in advance in unsupervised way: for example,
based on quantiles of feature vector x. This approach, in spirit similar to using 4-bit or 8-bit
floats in neural networks, leads to efficient scalable decision tree learning algorithms. If we are
using restricted set of splits, then, without loss of generality, we could assume, that all features
(numeric ones) are 8-bit integers. So for evaluation of best split we’ll need to compute at most
(feature count)×255×2 statistics:

n∑
i=1

ti [xi = b]∀b = 1. . .255,

n∑
i=1

wi [xi = b]∀b = 1. . .255.

(7)

Equation 7 is well-known histogram primitive: we just aggregate some float statistic based
on feature values. Histogram primitives could be efficiently parallelized between several cores,
hosts, GPU devices or GPU streaming multiprocessors.

Implementation note
Here we discus building of decision stump. For a deeper tree algorithm is essentially the

same: one iteratively split some leaf (or leaves) to two ones. In each leaf there are some subsets
of observations and the task reduces to build a decision stump conditioned on observations at
hand. The only one problem appears: this should be done for subset of observations and, as
a result, requires a random access to data (while first level could be done via sequential data
loads)3.

CatBoost specific note
CatBoost, at the same timewith classical boosting scheme, described above, support so-called

Ordered-boosting scheme. This scheme, designed to reduce overfitting, is more computationally
expensive, but, computation primitives for it are essentially the same.

3. DECISION TREES ON GPU

To effectively find a new decision tree on each step of GBDT algorithm we need to solve
following tasks: firstly, we need to store entire dataset in GPU RAM; econdly, as we discussed in
previous section, we need a fast way to compute histograms 7.

To take all advantages of GPU we need to solve this two problems simultaneously: dataset
layout in GPUmemory should be done in a suchway, thatwe could efficiently compute histogram
primitives. At the same time, dataset in GPU RAM should have low memory consumption.

Histograms computation for decision trees has their ownpeculiar properties. Firstly,weneed
to compute histograms for many features at once. Secondly, we knew, that each histogram has
limited number of bins (255 at most, but for production usage it’s usually sufficient to use just
32). And, finally, we need to compute several statistics.

For efficient computation on GPUwe shouldmake as little global memory access, as possible.
So, we should compute all statistics in one pass through data. And, as GPU uses ≥ 32-bit loads,

3 By the way, for specific type of tree (oblivious trees), which are used in CatBoost, random access to data could be
avoided on CPU. Sadly, but on GPU we still need to do random access because of hardware memory restrictions. So,
for this article, we don’t specify type of trees one should use.
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we should ensure, that all memory access are at least 32-bit wide. Also, all aggregation should be
done in fast shared memory.

One way to satisfy this conditions — group several features in one integer. For CatBoost we
group several numerical features in one 32-bit integer in following way:

— binary features are grouped 32 features per integer;
— 4 bits (or less) are grouped 8 features per integer;
— 8 bits features are grouped 4 features per integer.
And histogram primitives are designed to work on group of several features: 32 features and

2 statistics at one for binary once, 8 features and 2 statistics for 4-bit ones and 4 features and 2
statistics for 8-bit ones. Plus we specialize kernels for different bin count (discretization of data
to 32 bins, 64 bins, 128 bins and 255 bins).
3.1. 32-bin histogram

CatBoost kernels were initially designed to work with 32-bin histograms. This bin count pro-
vides a good speed vs quality tradeoff.

So, here we’ll discus only this specialization. All other CatBoost kernels are similar in spirit,
but less clear to describe.

So we have gradient values g [i ], associated weights w [i ] and feature groups ( f1, f2, f3, f4)[i ].
We have samples i1, . . . , il in current leaf and need to find the best condition to split this leaf to
two ones. To evaluate all possible splits of leave we need to compute 4×2 histograms:

histg [ j ][b] = ∑
k: f j [ik ]=b

g [ik ],

histw [ j ][b] = ∑
k: f j [ik ]=b

w[ik ].
(8)

CatBoost builds partial histogram per each warp and use sample ik
4. We will describe work

which is done by one warp on first 32 samples. Thread with index k processes sample ik . Sincewe are building 2×4 histograms at oncewe need 32∗32∗4 bytes of sharedmemory perwarp.We
are using the following layout: for each warp we allocate 4 partial histograms in sharedmemory
(so 4×2×32 = 1024 floats). First 8 threads will work with first histogram, second 8 ones with
second and so on. To avoid bank conflicts we group histograms by bin value: for each bin value
we store histogram block visualized on figure 2.

Figure 2. Histogram layout
To update histograms all 32 threads load sample labels and grouped features to registers.

Then warp performs updates of shared-memory histogram simultaneously in 4 iterations: see
listing 3.1 for histogram pseudo-code.

With describe we need 4KB shared memory per warp. So we could run at most 384 threads
per one block. On modern GPUs with 96KB of shared memory this allows us to run 2 blocks per

4 g and w vectors could be gathered in advance and be accessed via direct index, because they are the same for
all feature groups.
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streamingmultiprocessor and achieve 38% occupancy. For Kepler (and Fermi) hardware we are
able to run one block with 19% occupancy.

Listing 1. Histogram aggregation
void AddPoint ( const ui32 featuresGroup ,

const float t ,
const float w) {

/ / target or weight to use f i r s t
const bool f lag = threadIdx . x & 1;
/ /Warp Layout :
/ / feature : 0 0 1 1 2 2 3 3 1 1 . . .
/ / s tat : t w t w t w t w t w . . .
histGroupId = ( threadIdx . x & 31) / 8 ;
h is t = WarpHist + 8 * histGroupId ;
for ( int i = 0 ; i < 4; i ++) {

int f = ( threadIdx . x / 2 + i ) % 3;
const int sh i f t = 28 − 4 * f ;
int bin = featuresGroup >> sh i f t ;
bin &= 31;
int offset0 = 32 * bin + 8 * f + f lag ;
int offset1 = 32 * bin + 8 * f + ! f lag ;
h is t [ of fset0 ] += ( f lag ? t : w) ;
h is t [ of fset1 ] += ( f lag ? w : t ) ;

}
}

For group of binary features, and 4-bit features, almost the same layout allows to run 768%
threads per one block and achieve 75% occupancy.
3.2. Avoid atomics

Atomic operation in shared memory are expensive even on modern GPU with support on
hardware level. So this operations should be avoided, if possible. Currently, CatBoost computa-
tional kernels does not use atomic operations in shared memory at all: we need to be able to run
fast even on Kepler GPUs.

We havemade a simple test to evaluate atomic operation performance: CatBoost kernel uses
384 threads and achieves just 38% percent occupancy on GPU with 96KB of shared memory, and
19% occupancy on old-generation Kepler devices. We could run ×2 more blocks (or threads) in
exchange for atomic operations in sharedmemory: first 6warps could share histogramswith the
second 6 ones. We compared this histogram implementation with one which does not use atom-
ics. For benchmark we choose the most computationally expensive histogram — the histogram
on the first level of tree (splits after first depth are much cheaper).

Results are presented in figure 3. Atomics are awfully slow on NVIDIA K40 — indeed, Kepler
does not have hardware atomics, and computation with atomics are x1.5-x2.5 times slower even
on more modern hardware despite bigger occupancy.
64 © COMPUTER TOOLS IN EDUCATION. №2, 2022
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Figure 3. Atomic vs Non-Atomic performance

4. WORKING WITH CATEGORICAL FEATURES

Categorical features have a discrete set of values called categories which are not necessary
comparable with each other; thus, such features cannot be used in binary decision trees directly.
A common practice for dealing with categorical features is converting them to numbers at the
preprocessing time, i.e., each category for each example is substituted with one or several nu-
merical values. These values can be compared with each other, thus, they can be further used in
decision trees.

There are several ways to calculate numerical values to replace categorical feature. Themost
widely used technique which is usually applied to low-cardinality categorical features is one-
hot encoding: the original feature is removed and a new binary variable is added for each cate-
gory [8]. One-hot encoding can be done during the preprocessing phase or during training, the
latter can be implemented more efficiently in terms of training time and is implemented in Cat-
Boost. Computationally, dealing with one-hot is essentially the same as the numerical ones and
the problem reduces to one described in previous section.

Anotherway to deal with categorical features is to compute some statistics based on the label
values of the examples. Namely, assume that we are given a feature x = (x1, . . . , xn) and y ∈Rn is
a label value. The simplest way is to substitute the category with the average label value on the
whole train dataset. So, xi is substituted with∑n

j=1 [x j = xi ] · y j +α∑n
j=1[x j = xi ]+α+β

, (9)
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where [·] denotes Iverson brackets, i.e., [x j = xi ] equals 1 if x j = xi and 0 otherwise; α and β

are prior parameters [3, 8] used to reduce the noise obtained from low-frequency categories. For
regression tasks standard technique for calculating prior is to take the average label value in the
dataset. For binary classification task a prior is usually an a priori probability of encountering a
positive class [8].

This procedure leads to overfitting. For example, if there is a single example from the cate-
gory xi in the whole dataset then the new numeric feature value will be equal to the label value
on this example. A straightforward way to overcome the problem is to partition the dataset into
two parts and use one part only to calculate the statistics and the second part to perform GBDT
training. This reduces overfitting but it also reduces the amount of data used to train the model
and to calculate the statistics.

CatBoost uses amore efficient strategy, inspired by online-learning algorithms, which allows
to use the whole dataset for training. We perform a random permutation of the dataset and for
each example compute average label value for the example with the same category value placed
before the given one in the permutation. Let σ = (σ1, . . . ,σn) be the permutation, then xσp is
substituted with ∑p−1

j=1 [xσ j = xσp ]yσ j +α∑p−1
j=1 [xσ j = xσp ]+α+β

, (10)
where we again use a prior parameters α,β.

Replacing categorical features with such type of statistics is a straightforward: we just com-
pute everything in preprocessing stage and use reduce problem to learning of model on numeri-
cal dataset — this type of problem, as we discussed in previous section, could be efficiently done
on GPU.
4.1. Feature combinations

Note that any combination of several categorical features could be considered as a new one.
For example, assume that the task is music recommendation and we have two categorical fea-
tures: user ID and musical genre. Some user prefers, say, rock music. When we convert user
ID and musical genre to numerical features according to 10, we loose this information. A com-
bination of two features solves this problem and gives a new powerful predictor. However, the
number of combinations grows exponentially with the number of categorical features in dataset
and it is not possible to build all of them on preprocessing stage. So we are doing them during
learning in followingway.When constructing a new split for the current tree, CatBoost considers
combinations in a greedy way. No combinations are considered for the first split in the tree. For
the next splits CatBoost combines all combinations and categorical features present in current
tree with all categorical features in dataset. Combination values are converted to numbers on
the fly.

This part of algorithm is computationally very expensive. Construction of feature combina-
tions on the fly requires us to store each categorical feature in GPU ram and substitute features
combination to numbers via equation 10.

Firstly, lets deal with memory consumption and categorical feature storage: memory is lim-
ited, categorical features are, originally, not a numbers at all: they are, in general, some text. So
for each categorical feature we build perfect hash function and use at most 32-bits to store one
feature value. It’s still too much, so CatBoost use bit-compression to store perfect hashes for fea-
tures which are not currently used in computations. To achieve fast access to this features we
66 © COMPUTER TOOLS IN EDUCATION. №2, 2022
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are doing compression by blocks: we store several values in one 64-bit integer and compress/de-
compress via block of 128 threads.

Secondly, we need to build features combinations from several features. One of techniques,
which could be used on GPU, is rebuilding of perfect hash: we use perfect hash to store each
feature. To combine feature to new one we need to combine two 32-bit hashes in 64-bit one (first
feature takes first 32 bits, second feature next 32 bits), sort sampleswith respect to obtained hash:
for this we could use RadixSort, which could be efficiently done on GPU. After that, consecutive
runs of the same 64-bit hash will provide us a new 32-bit perfect hash for feature combination
(standard GPU technique: mark borders of segments with the same 64-bit hash value and scan
vector of borders masks).

Summing up, to maintain perfect hash for feature combinations we need:
— make 64-bit hash from two 32-bit ones,
— RadixSort new hash,
— mark borders,
— scan borders mask.

All this operations could be efficiently done with the help of CUB library. One more implementa-
tion note: we don’t need to build 64-bit hashes explicitly, as well as do radixSort on all 64 bits.

Now, we’ll assume, that we have perfect hash for feature combinations. How we could com-
pute equation (10) on GPU? From equation we see, that it’s essentially a segmented primitive: we
need to split observations two groups based on category value. Then we need to perform prefix
sums for numerator and denominator with respect to time in each group and, based on obtained
values, substitute features.

The most convenient and efficient way to split observations in groups on GPU is radix sort.
Fortunately, this primitives also maintains order of observations in each group. So, if we have x
is sorted with respect to σ, that after radix sort of x we will obtain groups of one category runs
with maintained time constraint.

After this, just run segmented scan primitive to compute all necessary statistics. CatBoost
use segmented scan primitive implemented on top of CUB library scan implementation [5] via
operator transformation.

5. BEYOND ONE GPU

CatBoost on GPU support multi-GPU learning as well ass distributed learning on several GPU
machines. Our distributed version uses MPI as a fast transport layer to transfer data between
several hosts. CatBoost architecture, unlike most of GPU-based MPI applications, is hybrid: we
use several GPU for oneMPI process. Also we don’t need any additional libraries to run on single
machine with several GPU.

There are two common ways to learn histogram-based decision trees in distributed setting:
we could split samples between devices (so-called sample-parallel learning) or we could split
features between devices. Each mode has their own advantages and disadvantages. CatBoost
support both modes of parallelization and in the next two paragraphs we will briefly discuss
this modes, their pros and cons.
5.1. Sample-parallel learning

Usually, sample parallel learning is the most efficient way to learn standard decision trees5.
Pros of sample-parallel learning:

5 If we care about memory consumption and don’t store copy of the input data on each GPU devices.
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• Dataset and all buffers are splitted between devices.
• Gradient computation and splitting of samples between leaves are parallel: it’s too costly
to split gradient computations between devices and then reshard data in a such way that
every device has all gradient values. This is especially useful for problems with computa-
tionally expensive gradient operations, like ranking problems.

Cons of sample-parallel learning
• If features count is much bigger than samples count, than reduce-scatter operation will
dominate all computations.

• Samples-parallel mode can’t be used for dynamic feature combinations. Categorical fea-
tures has high cardinality and for efficient build of perfect hashes on GPUwe need to store
all samples on one device.

• This type of parallelization could not be usedwith introduced in CatBoost ordered boosting
approach. It’s not a big issue: themost significant improvements for thismode are achieved
for dataset with small sample count. Such tasks does not needed several GPUs.

For sample-parallel learning themain network communication are reduce-scatter operation
on each level: we need to do reduction of partial histograms 7 stored on each devices, scatter
thembetween devices and use reduced histgorams to obtain the best split condition. For decision
trees (oblivious trees), used in CatBoost, it gives us (1 << level)×Bin-factor× feature count×
sizeof(float)×2 bytes to transfer on each level of tree.
5.2. Feature-parallel learning

The second approach to distributed learning is split data by features. Pros of this approach
are:

• Support for dynamic feature combinations: every GPU has access to every sample, so we
could use RadixSort to rebuild perfect hashes for feature combintations.

• Support for Ordered-boosting scheme.
• Efficient for cases, when sample count is much smaller, then features count.
But, this approach has significant cons:
• Redundant computation: we need to maintain indices of leaves for every sample on every
devices, we should compute gradient on each device.

• More memory pressure (duplicate memory usage by labels, weights, indices and tempo-
rary buffers).

For feature parallel learning the main network communication are:
• Leaf split: Broadcast for 1 bit per sample from one GPU device to all other
• Greedy feature combinations: broadcast selected categorical feature perfect hash values
from one device to all other. Memory need for transfer depends on feature cardinality.

So for datasetswith only numerical featureswe need to transfer (tree depth)×(sample count)
bits. For datasets with categorical features and enabled search for feature combinations the data
size is upper-bounded by tree depth× sample count× (1+32) bits.
5.3. Distributed communication primitives

CatBoost utilize several communication primitives to build search trees: reduce-scatter, all-
reduce, broadcast. Currentlywe use our custom implementation of all this primitives: for reduce-
scatter we use tree-based reduce, broadcast is done via our implementation of ring algorithm.
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For CatBoost all-reduce is done on very small vectors (like 64 floats), and this data also need to
be send to master host CPU ram as well, so we just use CPU for this primitive.

Themain advantage of our custom solutions is support for CUDA stream semantics (we could
run associate this operation with CUDA stream and overlap memory operations with computa-
tion), as well as support all major operation system: CatBoost could work on Linux, Windows,
MacOS in single-host, as well as multi-host modes.

6. PERFORMANCE

We made several benchmarks of CatBoost GPU library. Firstly, we compared CatBoost CPU
andGPU speed on datasetswith only numeric features and on datasetswith also categorical ones.
Secondly, we test our scalability on Yandex internal dataset for distributed setting: we measure
time we need to learn part of production formula on different GPU count with different GPU
connections (PCI, 1Gbs network, InfiniBand). Finally, we compare CatBoost with competitors.
6.1. CPU vs GPU speed

For CPU version we used dual-socket server with 2 Intel Xeon CPU (E5-2650v2, 2.60GHz) and
256GB RAM and run CatBoost in 32 threads (equal to number of logical cores). GPU implemen-
tation was run on several servers with different GPU types. Our GPU implementation doesn’t
require multi-core server for high performance, so different CPU and machines shouldn’t signif-
icantly affect GPU benchmark results. As you can see from figure 4 you could find speed-up one
could obtain from GPU compared to CPU, GPU always outperforms CPU: even old K40 almost 6
times faster than dual-socket CPU, while latest NVIDIA Tesla V100 is more then 40 times faster.

Figure 4. Speed-up from moving to GPU
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6.2. Distributed performance

Next, we CatBoost scaling beyond one GPU. We used dual-socket servers with 8 NVIDIA M40
per each host. This servers are connected with Mellanox InfniBand ConnectX-4 and standard
1GBs network. On figure 5 you can CatBoost performance gains from using several GPUs instead
of default 4 ones for different connection types.

Figure 5. Distributed CatBoost performance
As you can see, with fast interconnection we could achieve significant speed-up for decision

tree training onmulti GPUs. Evenmore— ifwe have enough data (e.g. usemore than half of 24GB
available RAM on each GPU), we could have performance gains even on slow 1Gbs networks.

6.3. Comparison with competitors

Its very hard to compare different boosting libraries in terms of training speed. Every li-
brary has a vast number of parameters which affect training speed, quality and model size in
a non-obvious way. Every library has its unique quality/training speed trade-off’s and can’t be
compared without domain knowledge (e.g. is 0.5% of quality metric worth it to train model 3-4
times slower?). Plus for each library it is possible to obtain almost the same quality with differ-
ent ensemble sizes and parameters. As a result, we can’t compare libraries by time we need to
obtain certain level of quality. And, for a fair comparison, we should account for time we need
to tune parameters, which is also hard to measure.

So we could give only some insights of how fast our GPU implementation could train amodel
of fixed size. We take the same dataset, which was used during CPU vs GPU benchmarks and
train XGBoost, CatBoost and LightGBM on 6× 106 lines. We run all experiments on the same
70 © COMPUTER TOOLS IN EDUCATION. №2, 2022
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machineswithNVIDIAGTX1080Ti accelerator, dual-core Intel XeonE5-2660 CPU and 128GBRAM.
For XGBoost and CatBoost we use default tree depth equal to 6, for LightGBM we set leafs count
to 64 to have more comparable results. We set bin to 32 for all 3 methods. All algorithms were
runwith 16 threads, which is equal to hardware core count.Wemeasure time to train ensembles
of 500 trees on three datasets: Higgs6, Epsilon7, MSLR8. Results are presented in figure 6.

Figure 6. CatBoost vs Competitors performance

7. CONCLUSION

In this article we’ve briefly describe GPU version of CatBoost library. This library design im-
plementation are based on years of working experience with decision trees on GPU: we had
successfully trained decision trees on Fermi GPU when the was no XGBoost at all, and now our
efficient implementation is available to everyone to use.

Here discussed basic computation ideas, as well as provide benchmark comparison. There
are, definitely, much more in our implementation, than we discuss: custom memory allocators
with memory defragmentation designed for decision tree boosting, opaque memory pointer on
master thread to allow efficient distributed tree learning, CUDA-stream-like semantic for launch-
ing kernel on several GPU not necessary on the one host, sophisticated caching scheme.We hope
this insights about GPU implementation will help to design and implement other efficient ma-
chine learning libraries.

6 https://archive.ics.uci.edu/ml/datasets/HIGGS, 11000000 samples, 28 float features.7 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html, 2000 float features, 400000 samples.8 https://www.microsoft.com/en-us/research/project/mslr/ 136 float features, 3M samples.
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В этой статье мы обсуждаем реализацию графического процессора открытой библи-
отеки градиентного бустинга CatBoost. Реализация обеспечивают наиболее эффе-
ктивную производительность на GPU среди общедоступных библиотек, и мы хотим
поделиться идеями проектирования и используемыми алгоритмами.
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